
The Handtracking Robot
Project Report

Technical University of Munich

Nirnai Rao
Jens Petit

Oguz Can Oguz

February 2018

Contents

1 Project Description 3
1.1 Motivation . 3
1.2 Problem Formulation . 3

2 Robot Model and Controller 5
2.1 Robot Model . 5
2.2 Robot Controller . 7

3 Kinect and Image Processing 12
3.1 Overview Kinect . 12
3.2 Color Detection . 13
3.3 Image Position Estimate . 15
3.4 Cartesian Position Estimate 15

4 Inertial Measurment Unit and Sensor Fusion 17
4.1 Inertial Measurement Unit . 17
4.2 Kalman Filter . 18

5 Conclusion 21

References 22
Literature . 22
Online sources . 22

1

Abstract

This is the report for the final project of the course Multi-Sensory Based
Dynamic Robot Manipulation offered at the Institute of Cognitive Science.

The project consists of an industrial robot which imitates the movement
of the hand of a human operator. The hands position and movement is
estimated using a Kinect sensor and an inertial measurement unit. The
sensors information are fused with a Kalman filter.

The report starts with a brief outline of the project before explaining
in depths the components. Chapter 2 deals with the robot model before
introducing the robot controller. In the following chapter, the Kinect and the
image processing framework is presented. Chapter 4 describes the inertial
measurement unit and Kalman filter. Finally, the real world performance
of the proposed setup is evaluated with measurements. A short conclusion
summarizes the report.

2

Chapter 1

Project Description

1.1 Motivation
Natural ways to interact with robots are gaining more importance as robots
start to leave their traditional "cages" in factories. Task which require hu-
man robot interaction are very likely to be the new normal in the future.
Therefore, the goal of this project is to implement a natural way to control
the end-effector of a six degree of freedom industrial robot.

1.2 Problem Formulation
The task seems very simple for a human: imitate the movement of another
hand. Implementing this in an industrial robot however, requires a lot of
advanced knowledge. The problem can be separated in two tasks: first, es-
timate the hand position and movement. Second, control the end-effector
pose to the desired position and track the given trajectory.

In this project we use an Inertial Measurement Unit (IMU) to measure
the orientation as well as accelerations of the hand. A Microsoft Kinect
consisting of an RGB-D camera gives the position. Subsequently, the infor-
mation are fused and smoothened with a Kalman Filter. In Figure 1.1, the
use case is illustrated. The information flow is shown in project Figure 1.2
where 𝑞 represents the joint states, 𝜏 the control torque and 𝑥 the pose of the
hand with the subscript 𝑑 representing the desired state. To control the six
degrees of freedom of the robot, a model-based adaptive operational space
controller is used. It is able to estimate some unknown dynamic parameters
of the robot.

3

1. Project Description 4

Figure 1.1: Exemplary use case.

Figure 1.2: Information flow between the components.

Chapter 2

Robot Model and Controller

Responsible for this chapter is Oguz Can Oguz. Our method of control is a
model based reference trajectory PD torque control, to which the prerequi-
site is to have the model of the robot at hand. Therefore, the robot modeling
and controller are highly unrelated. The robot has to be modeled as accu-
rately as possible for the controller to be stable, while the inaccuracies of
the model has to be compensated by the controller.

2.1 Robot Model

2.1.1 Kinematic Model

The robot we have is an UR10 model from Universal Robots. The robot has
6 rotational joints which will be used to control the position and orienta-
tion of the end effector. In the project, we modeled the robot based on the
parameters available on the official site of the Universal Robots, with few
modifications 2.1.

Our modifications consist of defining the 𝑥 − 𝑎𝑥𝑖𝑠 of all links starting
from 𝑥2 in the opposite direction and adding a 90° offset to both second
and fourth joints, so the starting position with all joint angle being equal to
zeros would give us the default position of the real robot. However the real
robot in the lab, was defined without the offsets in the DH table and was
given offsets later on, so we had to change our angle inputs with regards to
said offsets in the controller. In the end our DH table has the form in 2.1.

5

2. Robot Model and Controller 6

Figure 2.1: Official DH Model

𝑖 𝜃 𝑑 𝑎 𝛼

1 𝑞1 𝐿1 0 𝜋
2

2 𝑞2 + 𝜋
2 0 𝐿3 0

3 𝑞3 0 𝐿5 − 𝐿11 0
4 𝑞4 − 𝜋

2 𝐿2 0 −𝜋
2

5 𝑞5 𝐿11 0 𝜋
2

6 𝑞6 𝐿4 + 𝐿12 0 0

Table 2.1: 𝐷𝐻-table for the robot.

2.1.2 Dynamic Model

In the previous part we explained about the DH model required for kinematic
computations and control. However, we are controlling the robot by directly
specifying the torque commands to be applied to the robot joints and to
control the robot successfully we need a dynamical model as well. There
are a few extra requirements for the dynamical model. In the kinematic
model, we only needed the lengths of the joints and the angle offsets. In the
dynamical modeling, we require the positions for center of masses w.r.t. the
kinematic model, the masses, the inertial components and the gravity vector.
Unfortunately, there is not a way to correctly obtain all of them. The center
of mass positions and masses are declared to the public by Universal Robots
and we can determine the gravity vector but the inertial components are

2. Robot Model and Controller 7

missing. On top of that, the robot we are using is modified by a gripper on
the end effector, which also changes the dynamical model. These inaccuracies
have to be addressed in the controller design.

The robot kinematic parameters for the center of masses are defined as
the table 2.2, where 𝐿12 is defined as the end effector gripper length. The
masses are directly taken from the Universal Robot website.

𝑖 𝜃 𝑑 𝑎 𝛼

1 𝑞1 𝐿6 0 0
2 𝑞2 + 𝜋

2 𝐿7 𝐿8 0
3 𝑞3 𝐿9 𝐿10 0
4 𝑞4

𝐿2
2 0 0

5 𝑞5
𝐿11

2 0 0
6 𝑞6

(𝐿4+𝐿12)
2 0 0

Table 2.2: 𝐷𝐻-table for the robot.

2.2 Robot Controller
Our project description was to accurately mimic hand movements with the
robot. In order to achieve that there are two parts that need to be done
uncorrelated to each other. The trajectory of the hand has to be estimated
and the estimated trajectory has to be followed by the robot. The controller
is responsible for having the robot follow the trajectory supplied by the
trajectory estimator, which is in our case a kalman filter. In this section,
we are going to assume that the estimation is accurate and any problems
from the sensors are filtered and compensated beforehand, providing the
controller with an accurate desired trajectory.

2.2.1 Controller Fundamentals

Given the dynamic model of our robot,

𝜏 = 𝑀(𝑞)𝑞 + 𝐶(𝑞, 𝑞)𝑞 + 𝐺(𝑞) (2.1)

where 𝑀, 𝐶 and 𝐺 are the Inertia, Coriolis and Gravity matrices respec-
tively we are trying to find the correct 𝜏 to track our desired trajectory.
Note that the Coriolis matrices for a dynamical system are not unique, but

2. Robot Model and Controller 8

in equation 2.1, we want the unique 𝐶(𝑞, 𝑞) that validates the following
equation:

𝑁 = �̇�(𝑞) − 2𝐶(𝑞, 𝑞) (2.2)
Above, 𝑁 is defined as a skew-symettric matrix, and there is only one

Coriolis matrix that fulfills that equation. We can also express the dynamical
equation in the following way,

𝑌 (𝑞, 𝑞, 𝑞)Θ = 𝑀(𝑞)𝑞 + 𝐶(𝑞, 𝑞)𝑞 + 𝐺(𝑞) (2.3)
where 𝑌 is the Regressor that expresses the joint angle, velocity and

acceleration relations and 𝑇ℎ𝑒𝑡𝑎 are the parameters not depending on the
angles. Now assuming that we have a reference trajectory velocity 𝑞𝑟 and
acceleration 𝑞𝑟, we can build the error model with reference Regressor as
following:

𝑀(𝑞)𝑞𝑟 + 𝐶(𝑞, 𝑞)𝑞𝑟 + 𝐺(𝑞) = 𝑌𝑟(𝑞, 𝑞, 𝑞𝑟, 𝑞𝑟)Θ (2.4)
𝑀(𝑞)(𝑞 − 𝑞𝑟) + 𝐶(𝑞, 𝑞)(𝑞 − 𝑞𝑟) = 𝜏 − 𝑌𝑟Θ (2.5)

𝑆𝑞 = 𝑞 − 𝑞𝑟 (2.6)
𝑀(𝑞)𝑆𝑞 + 𝐶(𝑞, 𝑞)𝑆𝑞 = 𝜏 − 𝑌𝑟Θ (2.7)

The reference Regressor 𝑌𝑟Θ compensates for the torques that are pro-
duced by our robot model, generated from following the reference trajectory.
So we only need to concern ourselves with finding an appriopriate 𝜏 that
reduces the remaining error from the reference trajectory at each time step.
With passivity based Lyapunov analysis, it can be shown that using a 𝐾𝑑

gain on the error, while designing the reference trajectory for PD control is
minimizes the error at each step and is suitable for trajectory tracking.

𝜏 = −𝐾𝑑𝑆𝑞 + 𝑌𝑟Θ (2.8)
𝑆𝑞 = 𝑞 − 𝑞𝑟) (2.9)
𝑞𝑟 = 𝑞𝑑𝑒𝑠 − 𝐾𝑝Δ𝑞 (2.10)
𝑞𝑟 = 𝑞𝑑𝑒𝑠 − 𝐾𝑝Δ𝑞 (2.11)

Δ𝑞 = 𝑞 − 𝑞𝑑𝑒𝑠 (2.12)
Δ𝑞 = 𝑞 − 𝑞𝑑𝑒𝑠 (2.13)

The controller defined with the equations above is a starting template
and has to be modified for the specifics of our task and model.

2. Robot Model and Controller 9

2.2.2 Controller Modifications

The first problem is that, our desired trajectories are generated in the oper-
ational space, whereas our controller was designed for desired trajectories in
joint space. We can try to translate the desired trajectory into joint space
using inverse kinematics but that is not appropriate for cases where the
inverse kinematics does not have one solution. On the other hand, we can
try to define the trajectory error in the operational space using the for-
ward kinematics, as forward kinematics always has one solution. However,
we need to change our controller to work in the operational space. Defining
the controller in operational space is actually straightforward. We have to
define the errors in operational space first.

𝑆𝑥 = �̇� − �̇�𝑟 (2.14)
�̇�𝑟 = �̇�𝑑𝑒𝑠 − 𝐾𝑝Δ𝑥 (2.15)
�̈�𝑟 = �̈�𝑑𝑒𝑠 − 𝐾𝑝Δ�̇� (2.16)

Δ𝑥 = 𝑥 − 𝑥𝑑𝑒𝑠 (2.17)
Δ�̇� = �̇� − �̇�𝑑𝑒𝑠 (2.18)

Then we need to find the transformation from the operational space
velocities and joint space velocities, that is defined by the generalized pseu-
doinverse of the Jacobian 𝐽+.

𝑆𝑞 = 𝐽+𝑆𝑥 (2.19)
𝑞𝑟 = 𝐽+�̇�𝑟 (2.20)

𝑞𝑟 = 𝐽+�̈�𝑟 + (𝐽+)
𝑑𝑡

�̇�𝑟 (2.21)

(𝐽+)
𝑑𝑡

= −𝐽+ (𝐽)
𝑑𝑡

𝐽+ (2.22)

The next problem is that we want to have our desired orientation given in
euler angles, but the geometric Jacobian does not describe the time deriva-
tive of our forward kinematics anymore. So we have to find the derivative
of our forward kinematics, which is the analytical Jacobian which we will
denote as 𝐽𝑎.

𝐽𝑎(𝑞, Φ) = 𝑇 −1
𝐴 (Φ)𝐽(𝑞) (2.23)

2. Robot Model and Controller 10

In the equation above, 𝑇𝐴(Φ) describes the transformation from the
change in pose defined by the euler angles to linear and angular velocity.
Note that there is a different 𝑇𝐴(Φ) for each euler angle convention.

As the third problem, we have to compensate for the inaccuracies of our
dynamic model. The solution is to use adaptive control, which modifies the
Θ of the Regressor and changes it with an estimate Θ̂. The theta estimate
changes during the movement, to so that it compensates for the reference
trajectory torque.

𝜏 = −𝐾𝑑𝑆𝑞 + 𝑌𝑟Θ̂ (2.24)
˙̂Θ = −Γ−1𝑌 𝑇

𝑟 𝑆𝑞 (2.25)
(2.26)

The variable Γ in 2.26, is a squared weighting matrix to be tuned.

Now we have a working operational space controller, but we have 6
Degrees of Freedom(Dof) for controlling in 6 dimensional operation space,
which is sufficient if we linearly independent joint configurations. Unfortu-
nately it is not the case as joint configurations frequently become linearly
dependent which are called singular configurations or singularities, causing
the determinant of Jacobian to be zero making it non invertible.

With only position control, it is feasible to create a manipulability map
and only work in the regions with high manipulability however that manipu-
lability mapping is not so intuitive with pose control and it is not feasible to
expect the desired trajectory to only be in regions with high manipulability.

To overcome this difficulty, we have to first understands what happens to
the controller gets close to a singularity. As the determinant of our Jacobian
goes to zero, the determinant of the inverse goes to infinity. So while trans-
forming the operational space errors to joint space errors using the inverse
Jacobian, we are setting joint space errors very high, which in turn makes
our torques very high. We would like to limit this behaviour and dampen our
joint space errors near singularities, so that we move very little in the axis
with little manipulability. In order to achieve this, we used a method called
"Damped Inverse Jacobian", which changes the generalized pseudo-inverse
of our Jacobian 𝐽+ to 𝐽+

𝑎𝜆.

𝐽+
𝑎 → 𝐽+

𝑎𝜆 = 𝐽𝑇 (𝐽𝐽𝑇 + 𝜆𝐼)−1 (2.27)

2. Robot Model and Controller 11

This damped pseudo-inverse minimizes the expression ‖𝐽𝑞 − 𝑥‖ + 𝜆‖𝑞‖.
This method does not solve the problem when we are in a singular config-
uration or when the desired pose is a singular configuration, but it helps
to avoid getting to those singular configurations, at the cost of introducing
inaccuracies into our tracking. The lambda should be chosen small enough
to no affect the performance away from the singularities but big enough to
dampen our velocity so that we do not reach the singular configuration. For
our task, we found a 0.2 a suitable parameter for 𝜆.

The one remaining problem is that derivating the term lambda took
to much computational power and time. So we made an approximation
based on the definition. If we are away from a singular configuration, the
damped pseudo-inverse is almost the same as the normal pseudo-inverse, so
we used that instead. Near singular configurations, the approximation no
longer holds, but the acceleration should be very small and the effect of
the change in Jacobi on acceleration should be even smaller so we did not
account for that term.

To summarize the final version of the controller is defined as following:

𝜏 = −𝐾𝑑𝑆𝑞 + 𝑌𝑟Θ̂ (2.28)
𝑆𝑞 = 𝐽+

𝑎𝜆𝑆𝑥 (2.29)
𝑞𝑟 = 𝐽+

𝑎𝜆�̇�𝑟 (2.30)

𝑞𝑟 = 𝐽+
𝑎𝜆�̈�𝑟 − (𝐽+

𝑎

(𝐽𝑎)
𝑑𝑡

𝐽+
𝑎 �̇�𝑟) (2.31)

Chapter 3

Kinect and Image Processing

Responsible for this chapter is Nirnai Rao.

3.1 Overview Kinect
The Microsoft Kinect 2 consists of multiple sensors. For our purposes we
will be only focusing on the RGB Color Camera and Depth Sensor. The
Color Camera has a resolution of 1930 x 1080 and runs at 30Hz (fps). The
Depth Camera has a resolution of 512 x 424, a minimal depth of 50cm and
a maximal depth of 4.5m. The difference in resolution doesn’t allow for a
direct pixel mapping from color image to depth image. A process called
registration, is necessary to allow for such a mapping.

Since this project is developed on the Robot-Operating-System (ROS)
framework, it is necessary to have some sort of communication between ROS
and the Kinect drivers.

Both features, namely the communication with ROS and registration of
the two cameras have already been implemented by an open source project
called IAI-Kinect2 [5], which can be found on GitHub. IAI-Kinect2 is a
ROS-Package, which is divided into three sub packages.

The main package is the bridge package 3.1, which establishes a connec-
tion to the kinect driver and publishes the data as ROS-Topics. This Node
only is very power and bandwidth efficient, and thus only publishes data,
when a client trys to subscribe any of the topics published by it. To run the
package, use following command:

1 $ roslaunch kinect2_bridge kinect2_bridge.launch

After doing so, topics are publshed in three qualities. HD, Quarter-HD
and SD. The HD topics are called as follows:

12

3. Kinect and Image Processing 13

iai_kinect2
iai_kinect2
kinect2_bridge
kinect2_calibration
kinect2_registration
kinect2_viewer

Figure 3.1: IAI-Kinect2 directory structure

1 /kinect2/hd/camera_info
2 /kinect2/hd/image_color
3 /kinect2/hd/image_color/compressed
4 /kinect2/hd/image_color_rect
5 /kinect2/hd/image_color_rect/compressed
6 /kinect2/hd/image_depth_rect
7 /kinect2/hd/image_depth_rect/compressed
8 /kinect2/hd/image_mono
9 /kinect2/hd/image_mono/compressed

10 /kinect2/hd/image_mono_rect
11 /kinect2/hd/image_mono_rect/compressed
12 /kinect2/hd/points

The two topics /kinect2/hd/image_color_rect and /kinect2/hd/image_depth_rect

are automatically registered in the /kinect2/hd/points topic, thus these are
the three data stream used in this project.

3.2 Color Detection
A easy to implement approach for object detection in a color image, is to
track the color of the object. It would also be feasible to track the shape
or find the object directly in the depth image. Both of these options are
either less robust or have unreasonable complexity for this task. To find the
object via its color in the image, the open source library OpenCV was used
[1]. This library makes it easy to manipulate images and run well studied
computer vision algorithms. To filter color in the RGB space, in which the
images lie after revieving them, can be done, but is tedious. It would be
necessary to find all RGB combinations, which span a desired range of color
and then filter each of the three channels. The task gets much easier after
converting the image into the HSV (Hue-Saturation-Value) space. The Hue
of a color is a unique value, where as the other two values describe intensity
and saturation. Thus it is only necessary filter a range of hue values. Median

3. Kinect and Image Processing 14

Figure 3.2: RGB-Image

Figure 3.3: Filtered Image

Figure 3.4: Color Detection

filtering is necessary as next step to anly find object where this color is
dominant. After these two filtering steps we are left with a binary image,
where the desired regions are white and the rest is black 3.3.

3. Kinect and Image Processing 15

3.3 Image Position Estimate
The result of the previous step give as a region of pixels, where the object
might be. To get an good position estimate it is import which part of the
region is chosen, to look up in the pointcloud. For that an we want to detect
the boundary of the found region and fit a shape to it, which resembles the
object the most. In our case this would be a rectangle, as you can see in 3.2.
For detecting the edges any edge detector in OpenCV can be use. In our
case we went for the canny edge detector. After finding the edges, we can
find a contour of the object and then fit a rectangle closest to this contour.
All of these steps are necessary so that we can pin down one desired pixel,
where we are sure, the object is in.

3.4 Cartesian Position Estimate
From the rectangle the easiest approach is to find the center point and lookup
the catesian coordinates at that pixel. This is error prone though since the
fitted rectangle doesn’t necessary cover the object in the center. This would
lead to a large error in the z coordinate, if the IR ray did not hit the object at
that position. To reduce the probability to have bad z readings, we decided
to look at all pixels in the rectangle and took the median of that value. This
helped us eliminate outliers and gave us much more robust estimate. After
experimental validation this method worked quite well, but was still jumpy
in a small radius around the object itself. To reduce this high frequency
noise, we introduced a low pass filter. One very good low pass filter is the
exponential moving average. It is a infinite impulse response (iir) filter, which
makes it possible to implement the filter without having a data buffer. The
general idea of this filter is to weight the data with an exponential function
and then average over the weighted datapoints.

Tunable parameters are the decay rate of the exponential function and
the window length after which to cut of the window. A nice property of this
filter is that it can be boiled down to one tuning parameter when using a
different formula to calculate the filtered value.

�̂�(𝑡) = 𝛼 · �̂�(𝑡 − 1) + (𝛼 − 1) · 𝑥𝑚𝑒𝑎𝑠 (3.1)

Equation 3.1 leaves us with 𝛼 as tunable parameter. 𝛼 incorporates the
information of window length and decay rate. Large 𝛼 for example means
a fast decay, but a long window length, whereas small alphas mean the
opposite. Thus larger 𝛼 means more filtering. This also introduces a delay

3. Kinect and Image Processing 16

Figure 3.5: Exponential weights

which is critical for this application. If the delay of the position measure-
ment gets to large, it might cause a lot of harm. The Kalman-Filter fuses
multiple measurements together and trys to come up with the best estimate
while considering all information. If the datapoints don’t match sequencially
anymore, this will introduce unexpected behavior. When all parameters are
tuned right though, this process gives a very smooth position estimate.

Chapter 4

Inertial Measurment Unit
and Sensor Fusion

Responsible for this chapter is Jens Petit.

4.1 Inertial Measurement Unit
An Inertial Measurement Unit (IMU) consists of a combination of accelerom-
eters, gyroscopes and magnetometers with the purpose of estimating an
objects orientation as well as its relative change in pose. In this project
the device MTi-30 AHRS from the manufacturer Xsens is used. Using the
earth’s magnetic field as a reference, it outputs drift free roll, pitch and yaw
orientation plus linear accelerations as well as angular velocities [2].

For establishing the communication between ROS and the sensor, there
exists the package xsens_driver [6]. It connects the sensor in such a way
that it publishes a rostopic called /imu/data with its data and a frequency
of around 200 Hz. Furthermore, the proprietary software of the device manu-
facture, the so-called mtmanager allows for a quick graphical interpretation
of the sensor’s data.

The orientation of the sensor is given with respect to the so-called ENU
coordinate system, which x-axis point to the east, z-axis up and y-axis to
the north. Also the linear accelerations and angular velocities are given in
this coordinate system.

17

4. Inertial Measurment Unit and Sensor Fusion 18

4.1.1 Calibration of IMU

To transform the information of the IMU in the robot base frame, the trans-
formation between the ENU frame and the base has to be known. To solve
this issue, the IMUs coordinate system can be overlayed with the robot base
system and this orientation be saved as the transformation between the ENU
system and the robot’s base.

4.2 Kalman Filter
The controller needs as its input a desired state consisting of a pose in
cartesian space and its two time derivatives. To estimate all these states,
filtering noise and fusing the kinect position data with the IMU data, a
Kalman Filter is used. The concept of this filter was introduced by [3] and
has gained widespread application in real-time systems. The notation for
this chapter is taken from [4].

4.2.1 General description

In general, the Kalman filter aims to model a linear process which is governed
by the law

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝑤𝑘−1 (4.1)

where 𝑥𝑘 models a state at timestep 𝑘, 𝐴 is the state transition matrix
relating the state of the previous timestep to the next and 𝑤𝑘 represents the
process noise which is normally distributed

𝑝(𝑤) ∼ 𝒩 (0, 𝑄) . (4.2)

with the process noise covariance matrix 𝑄. The measurement is expressed
as

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 (4.3)

with the matrix 𝐻 relating the states of the process to the measurement
space 𝑧𝑘 and 𝑣𝑘 being the measurement noise which is also gaussian dis-
tributed

𝑝(𝑣) ∼ 𝒩 (0, 𝑅) (4.4)

where 𝑅 is the measurement noise covariance matrix.

4. Inertial Measurment Unit and Sensor Fusion 19

4.2.2 Process and measurement model

The states for one cartesian coordinate direction we aim to model are the
position 𝑠𝑘, velocity 𝑣𝑘, acceleration 𝑎𝑘 and an acceleration offset Ω𝑘 which
occurs due to the fact that is impossible to remove perfectly the earths
gravity from the linear acceleration measurement. The complete process
model is then given as⎡⎢⎢⎢⎣

𝑠𝑘

𝑣𝑘

𝑎𝑘

Ω𝑘

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 Δ𝑡 Δ𝑡2/2 0
0 1 Δ𝑡 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

𝑠𝑘−1
𝑣𝑘−1
𝑎𝑘−1
Ω𝑘−1

⎤⎥⎥⎥⎦ + 𝑤𝑘−1. (4.5)

which assumes a movement with constant acceleration. As we want to able
to follow arbitrary trajectories of the human hand, the model needs more
flexibility. This is given through the noise term

𝑤𝑘 =

⎡⎢⎢⎢⎣
Δ𝑡2/2

Δ𝑡
1
0

⎤⎥⎥⎥⎦ 𝑎𝑘, 𝑎𝑘 ∼ 𝒩 (0, 𝜎𝑎) (4.6)

which assumes that we induce normally distributed acceleration into our
model with the accelerations variance 𝜎2

𝑎 as a parameter. Consequently, the
process noise covariance matrix is given as

𝐸[𝑤𝑘𝑤𝑇
𝑘] = 𝑄 =

⎡⎢⎢⎢⎣
Δ𝑡4/4 Δ𝑡3/2 Δ𝑡2/2 0
Δ𝑡3/2 Δ𝑡2 Δ𝑡 0
Δ𝑡2/2 Δ𝑡 1 0

0 0 0 0

⎤⎥⎥⎥⎦𝜎2
𝑎. (4.7)

For relating the states with the measurement after (4.3), we use[︃
𝑠𝑚

𝑘

𝑎𝑚
𝑘

]︃
=

[︃
1 0 0 0
0 0 1 1

]︃
𝑥𝑘 + 𝑣𝑘. (4.8)

It results from the fact that the measured position 𝑠𝑚
𝑘 is directly given

through the Kinect and it corresponds to our state 𝑠𝑘. For the acceleration
we are able to measure the acceleration 𝑎𝑚

𝑘 which corresponds to the real
acceleration plus an offset as

𝑎𝑚
𝑘 = 𝑎𝑘 + Ω𝑘. (4.9)

4. Inertial Measurment Unit and Sensor Fusion 20

Also, the measurements contain noise which is modelled through the indi-
vidual variances of the sensors

𝑅 =
[︃

𝜎2
kin 0
0 𝜎2

imu

]︃
. (4.10)

4.2.3 State estimation

Having described the process to model and how it relates to the sensor
readings, we can address the state estimation process. The state estimation
of the Kalman filter consists of two steps. First, the update step. It projects
the old state estimate ahead using the model assumptions given through the
transition matrix 𝐴 and the process noise covariance 𝑄. The equations are
given as

�̂�−
𝑘 = 𝐴�̂�𝑘−1 (4.11)

𝑃 −
𝑘 = 𝐴𝑃𝑘−1𝐴𝑇 + 𝑄 (4.12)

where �̂�𝑘 denotes the estimated state and 𝑃𝑘 the estimated covariance. The
minus signs indicates that these are the estimates after the predict step
which have not yet been updated through the sensor measurements.

In the second step, the results from the predict step are updated through
the measurements. Consequently, it is called the update step with the three
calculations

𝐾𝑘 = 𝑃 −
𝑘 𝐻𝑇 (𝐻𝑃 −

𝑘 𝐻𝑇 + 𝑅)−1 (4.13)
�̂�𝑘 = �̂�−

𝑘 + 𝐾𝑘(𝑧𝑘 − 𝐻�̂�−
𝑘) (4.14)

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃 −
𝑘 (4.15)

where 𝐾𝑘 is the Kalman gain. The predict and update step are repeated in
a loop to give continuous state estimations for the controller.

4.2.4 Angular velocities and acceleration

A very similar approach as for the linear state estimates is followed for
the angular velocities and accelerations. However, here the orientation is
directly send to the robot because it is already preprocessed in the IMU
with advanced filtering techniques.

Chapter 5

Conclusion

The project report gives a short overview of the projects three main compo-
nents: the robot model and controller, the image processing workflow and fi-
nally the sensor fusion with the Kalman filter. Key topics as well as problems
are discussed and solutions presented with their mathematical foundation.

An extension to the project would be to make it more robust and even
more dynamical. Also, instead of tracking a coloured object, tracking only
the hand of the human operator could be interesting in the future. The point
cloud of the Kinect gives enough information to actually estimate the hand
pose.

21

References

Literature
[1] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software

Tools (2000) (cit. on p. 13).
[2] Xsens Technologies B.V. MTi 10-series and MTi 100-series. Ver-

sion MT0605P. Oct. 2013. url: https://www.scribd.com/document/
326266454/MTi-Usermanual (cit. on p. 17).

[3] R. E. Kalman. “A New Approach to Linear Filtering And Prediction
Problems”. In: ASME Journal of Basic Engineering (1960) (cit. on
p. 18).

[4] Greg Welch and Gary Bishop. An Introduction to the Kalman Filter.
Tech. rep. Chapel Hill, NC, USA, 1995 (cit. on p. 18).

[5] Thiemo Wiedemeyer. IAI Kinect2. https://github.com/code- iai/iai_
kinect2. Accessed June 12, 2015. University Bremen: Institute for Arti-
ficial Intelligence, 2014 – 2015 (cit. on p. 12).

Online sources
[6] url: http : / / wiki . ros . org / xsens _ driver ? distro = groovy (visited on

02/20/2018) (cit. on p. 17).

22

https://www.scribd.com/document/326266454/MTi-Usermanual
https://www.scribd.com/document/326266454/MTi-Usermanual
https://github.com/code-iai/iai_kinect2
https://github.com/code-iai/iai_kinect2
http://wiki.ros.org/xsens_driver?distro=groovy

	Project Description
	Motivation
	Problem Formulation

	Robot Model and Controller
	Robot Model
	Robot Controller

	Kinect and Image Processing
	Overview Kinect
	Color Detection
	Image Position Estimate
	Cartesian Position Estimate

	Inertial Measurment Unit and Sensor Fusion
	Inertial Measurement Unit
	Kalman Filter

	Conclusion
	References
	Literature
	Online sources

