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Abstract

Due to large data sizes in X-ray computed tomography, efficiency in implementing
reconstruction algorithms is a core requirement. Efficiency aims to reduce both space
and time complexity. This is especially important as ever-increasing resolution along
with time requirements have raised the computational load further.

To mitigate these effects, the present thesis deals with improving memory and com-
putational aspects of the tomographic reconstruction software framework named elsa. It
is a free and open-source software which is developed at the Computational Imaging
and Inverse Problems group at the Technical University of Munich.

The first efficiency improvements examined in this thesis stem from the application of
expression templates. They are a compile-time programming technique which saves the
work to be done for later lazy evaluation instead of creating temporary intermediate
results.

The second main part investigates using GPUs for performing element-wise vector
operations, because many computations within elsa fall into this category. Naturally,
these operations are parallel problems and therefore well suited for heterogeneous
computing environments. Contrary to CPUs, GPUs are very powerful in performing
massively parallelized computations due to the fact that they consist of hundreds of
computational cores.

The thesis starts with a general problem statement as well as motivation for X-
ray computed tomography. Subsequently, a short introduction to X-ray imaging and
computed tomography illustrates the context. It is followed by an overview of the elsa
software framework. Then, the concept of expression templates and their application
within elsa is explained. Benchmarking results conclude the chapter. Next, the utilization
of GPUs for element-wise vector operations is discussed. As a solution, a custom GPU
library called Quickvec is developed which internally builds on top of the previously
designed expression templates. Its impact on efficiency is measured in different scenarios.
The final chapter concludes the thesis with a summary and a discussion about the
limitations of the presented solutions.

The main contribution of this thesis is the development of a generic element-wise
vector arithmetic library utilizing the processing power of GPUs and its integration into
elsa.
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1. Introduction

1.1. Motivation and Research Background

X-ray Computed Tomography (CT) allows us to see inside objects where our eyes only
perceive the outer structure. It does not require opening up the objects and therefore
enables insights in a non-destructive way (ignoring radiation damage). What seems like
a miracle is based on the close interaction between physics, mathematics, engineering
and computer science. The applications are manifold: from scanning passengers at
airports over obtaining information about broken bones to locating material fatigue in
security critical parts like turbine blades [Her09].

Over the years, the requirements towards X-ray CT have become ever more ambitious.
Two of them are considered in this thesis: First, higher scanning resolutions for more fine-
grained analysis as well as localization within the objects. Second, shorter reconstruction
times giving results within minutes after the scan. Both requirements contradict each
other, as a higher resolution increases the computational load and therefore leads to a
longer reconstruction time. Consequently, one key aspect of research concerning CT is
reducing both space and time complexity of the reconstruction algorithms.

Over the last few years, a general software framework for solving reconstruction tasks
in CT has been developed at the Computational Imaging and Inverse Problems research
group of the Technical University of Munich. It implements state-of-the-art algorithms
and is available as free and open-source software under the name of elsa [LHF19]. The
present thesis deals with improving memory and computational aspects of it.

From a low-level perspective, most of the computations within elsa fall into the cate-
gory of linear algebra or element-wise vector operations. Consequently, optimizing these
operations is promising from an efficiency perspective, as it affects all reconstruction
problems. Already at compile-time, some information about the computations to be
done is available. This can be utilized to automatically create more efficient code via
template metaprogramming, a technique which is known in this context as Expression
Templates (ETs).

The element-wise vector operations within elsa are parallel problems where each
computation is independent from each other. Hence, they are perfectly suited for the
application of heterogeneous computing, leveraging the higher efficiency of GPUs over
CPUs for parallel processing tasks [Coo12].

Developing and incorporating both ETs and GPU-based vector arithmetic into elsa are
the objectives of this thesis. Ultimately, the goal of elsa is to provide a high-performance
framework for developing novel algorithms and imaging techniques within the context
of X-ray CT.
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1. Introduction

1.2. Thesis Outline

The present thesis starts with a brief introduction to X-ray CT, providing the necessary
context. Subsequently, elsa is introduced through outlining the high-level design as well
as the main classes. In the following chapter, the compile-time programming technique
of ETs is explained and how it can be applied within elsa. A performance evaluation
concludes the chapter. After surveying existing GPU-based vector arithmetic libraries, a
custom solution called Quickvec is developed and benchmarked. Internally, it builds on
top of the work presented for the ETs. The final chapter summarizes the added features,
before discussing their limitations and providing links for future work.

2



2. Fundamentals of X-ray Computed
Tomography

This chapter provides a short general introduction to X-ray CT, summarizing the
technical progress from the discovery of X-ray radiation towards the development of
high resolution X-ray CT scans.

2.1. X-ray Imaging

X-rays refer to electromagnetic radiation in the high-energy spectrum with wavelengths
in the range from 0.01 to 10 nm. They were discovered in 1895 by the scientist Wilhelm
Conrad Röntgen [Rön96]. Consequently, this radiation, invisible to the human eye, is
also known as Röntgen radiation.

Due to their high-energy nature, X-rays are able to penetrate objects that are opaque to
the human eye. However, they not only traverse the object but also interact with its matter.
This interaction, also called modulation, is what enables X-ray imaging. Equivalent to
photography, X-ray imaging captures the differences in modulation leading to results
like the famous first radiograph of Röntgen’s wife hand in Figure 2.1. The image shows
the effect of stronger absorption in the bones of the hand compared to the soft tissue
surrounding it.

On an atomic scale, this effect is caused by photoelectric absorption where an X-ray
photon is absorbed by an electron [AM11]. From a macroscopic point of view, the
individual interactions can be modelled according to the Beer-Lambert law

Is = I0 exp
(
−
∫

L
f (r)dr

)
, (2.1)

where Is refers to the measured intensity, I0 to the initial intensity of the X-ray source,
f (r) corresponds to the attenuation coefficient at location r ∈ R3 and L is the traversed
path [Buz11]. A large attenuation coefficient indicates dense matter causing strong
absorption. For a constant f (r) = c, the intensity decays exponentially along the line L.

The main drawback from basic X-ray imaging is its projective nature: The measured
intensity corresponds to the accumulated absorption after the ray has completely tra-
versed the object. Therefore, all depth information is lost. This limitation is what CT
overcomes.
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2. Fundamentals of X-ray Computed Tomography

Figure 2.1.: Radiograph of a human hand with a ring on the third finger [Rön96].

2.2. Tomographic Reconstruction

The goal of X-ray CT using absorption contrast is to reconstruct the attenuation coeffi-
cients f (r) at all locations from the measured intensities.

In 1963, Allan M. Cormack formalized a method to describe the inversion of the
imaging process for X-ray imaging. It requires taking measurements of the object
from many different angles and then combining the information to reconstruct the
attenuation coefficients [Cor63]. This setup is illustrated for the two-dimensional (2D)
case in Figure 2.2. The detector is rotated together with the radiation source around the
object. In the following years, Sir Godfried Hounsfield developed the first real-world
apparatus for CT based on the work of Cormack [Hou73]. Nowadays, X-ray CT scanners
are a staple in institutions like hospitals all around the world.

2.3. Tomographic Reconstruction as an Inverse Problem

An inverse problem can be characterized as trying to determine the causes from the
effects [EHN96]. From a mathematical perspective, tomographic reconstruction is an
example of such an inverse problem. The forward problem can be formulated as

A( f ) = g (2.2)

where A : V → W is the linear operator mapping from function space V to W and
f ∈ V, g ∈W are members of their respective spaces. However, the quantity of interest

4



2.3. Tomographic Reconstruction as an Inverse Problem

f (r)

e1

e2Source

Detector

Figure 2.2.: Schematic CT setup. Multiple measurements are taken from different angles
in a circular trajectory to reconstruct the attenuation coefficient f (r) at all
locations within the object.

is computed by the inverse problem

f = A−1(g), (2.3)

assuming the operator A is invertible. Transferring these definitions to the use-case of
X-ray CT using absorption contrast, f : V → R is the function describing the attenuation
coefficient at location r ∈ V, where V ⊂ R3. g corresponds to the measured intensity
signal assuming some detector geometry.

The inverse problem of X-ray CT falls into the category of ill-posed problems as it does
not fulfill the requirements for a well-posed problem as defined by Hadamard [Had02].
A well-posed problem requires the solution to be unique which might not always be the
case. Another aspect is that small measurement errors can cause large deviations in the
solution. An ill-posed problem is especially challenging to solve.

One approach to deal with the presented inverse problem is to directly discretize
it and then apply linear algebra or optimization techniques. Analytical approaches
like filtered backprojection are not further discussed in this thesis. They are limited to
standard detector geometries and therefore not a research topic within the elsa software
framework [Her09].

Discretization is achieved through the series expansion technique [Her09]. Using
pixel-wise basis functions, the continuous signals f as well as g can be represented
by finite dimensional vectors x ∈ Rn and y ∈ Rm respectively. Using the discretized
signals and the Beer-Lambert law from (2.1), the measurement model represented by
the linear operator A is derived as the system matrix A ∈ Rm×n. Each row of A encodes
the linear combination of attenuation coefficients xi resulting in a single detector pixel
measurement of yj. The system matrix therefore incorporates all the information about
the CT geometry like source and detector positions or other source properties.

The discretized forward problem, also called forward projection, becomes a simple
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2. Fundamentals of X-ray Computed Tomography

system of linear equations
Ax = y. (2.4)

Its counterpart, the backward problem, known as backward projection, turns into

x = ATy. (2.5)

Through optimizing the squared error

arg min
x

1
2‖Ax− y‖2

2 (2.6)

with a gradient-based technique like gradient descent, an iterative solution can be found.
Note that directly determining x in (2.5) is not possible due to discretization errors.

Another important point to consider is the size of the matrix A. A typical three-
dimensional (3D) reconstruction volume has n = 10243 voxels. All of the projections
taken together are in the same order of magnitude, resulting in m = 10243 measurements.
This means A has m×n = 260 entries, requiring multiple exa-bytes of memory for storing
it. As such amounts of memory are beyond the technical possibilities in the foreseeable
future, A is not stored directly but only computed when needed.
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3. The elsa Software Framework

The following chapter provides a short introduction to elsa, the tomographic recon-
struction software which is extended in this thesis [LHF19]. After discussing its
high-level design and motivation, the core classes as well as as a 2D reconstruction
example is given. The source code for elsa can be found in a public repository at
https://gitlab.lrz.de/IP/elsa.

3.1. Motivation

The main motive for developing elsa is to provide a flexible, high performance software
framework which allows to solve a wide variety of reconstruction tasks. In practice,
this is achieved through an object-orientated approach, leveraging modern C++17. It
traces its heritage back to the (nonpublic) CampRecon software which was refactored,
improved and made available under a permissive license [WVL14]. The main advantage
of elsa is its flexibility compared to other available reconstruction software. It follows
the general mathematical concept for solving linear inverse problems developed in
Section 2.3, making it suitable for a wide range of reconstruction tasks.

3.2. Architecture

As stated before, elsa follows an object-orientated style to translate the general math-
ematics involved in solving a linear inverse problem into code. Therefore, all main
concepts from Section 2.3 have been translated into classes. The most important ones
for the work presented in this thesis are:

• DataContainer. It handles the discrete representation of signals in a vector-like
container. A DataDescriptor member represents meta information, allowing
transformations of the linearized data into a higher dimensional representation.
Member functions and operator overloading allow mathematical operations on
the stored data.

• LinearOperator. It is the base class corresponding to the linear operator A
introduced in Section 2.3. The LinearOperator can be made up of multiple
operators chained together. Through the apply and applyAdjoint functions, it
provides on-the-fly computations for the forward and backward projection which
includes computing the system matrix A.

7
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3. The elsa Software Framework

• Problem. This is the abstract base class representing a generic optimization prob-
lem, as stated through (2.6). Member functions provide access to the current
solution, gradient and Hessian which can then be used in a solver. Additionally,
the optimization problem can be extended through regularization terms.

• Solver. It serves as the abstract base class for iteratively solving an optimiza-
tion problem. Instances are constructed with objects of the Problem class as an
argument.

All classes are templated on a numerical type for switching between single and double
precision floating point numbers. Note that this detail is omitted in the subsequent
treatment of elsa for simplicity and single precision floats are assumed. A generic
flowchart illustrates the steps for solving a linear inverse problem in Figure 3.1.

For the LinearOperator, two GPU-accelerated implementations exist. They are called
Joseph’s method and Siddon’s method, referring to their original creators [Jos82] [Sid85].

LinearProblem
Ax = y

Solver

DataContainer
x

LinearOperator
A

DataContainer
y

Figure 3.1.: Flowchart of a generic reconstruction task in elsa.

3.3. The DataContainer Class

As the DataContainer plays a significant role for the next chapters, it is discussed in
further detail. The container itself does not directly store and manipulate data. It only
delegates this work internally, using an abstract base class pointer of type DataHandler*.
Polymorphism allows using different derived handlers. The motivation for this is to
provide the user with a consistent interface through the DataContainer regardless of the

8



3.4. The DataHandler Class

underlying storage mechanism implemented in the DataHandler. The member variable
_dataHandlerType indicates the currently used DataHandler. Together with overloaded
mathematical operators like +, -, / and *, the DataContainer interface enables intuitive
(element-wise) vector arithmetic as shown in Code 3.1. Additionally, operations with
scalars as well as reduction operations like different norms or the dot product between
two DataContainers are available. Figure 3.2 summarizes the class in Unified Modelling
Language (UML) notation.

Code 3.1: Arithmetic operations using DataContainers

1 DataContainer a(vector1);
2 DataContainer b(vector2);
3 DataContainer result = log(a) * 1.24 + b;
4 float norm = result.l2norm();

elsa::DataContainer

- _dataHandlerType : DataHandlerType
- _dataHandler : std::unique_ptr<DataHandler>
- _dataDescriptor : std::unique_ptr<DataDescriptor>

...
+ DataContainer& operator*=(DataContainer const& dc)
+ DataContainer& operator*=(float scalar)
...

Figure 3.2.: Overview of the DataContainer class with selected members.

3.4. The DataHandler Class

This abstract base class encapsulates the handling process of the data being stored. It
provides the common interface for the DataContainer via pure virtual member functions.
In the current state of elsa, there are four derived child classes:

• DataHandlerCPU. Data resides in the main memory in the form of an
Eigen::Matrix.

• DataHandlerMapCPU. Non-owning data mapping of main memory through
an Eigen::Map.

• DataHandlerGPU. Data resides in the GPU memory using a quickvec::Vector.

• DataHandlerMapGPU. Non-owning data mapping of GPU memory with a
quickvec::Vector.

9



3. The elsa Software Framework

The extension with the GPU-based handlers as well as the development of the Quickvec
library is part of Chapter 5. The CPU handlers are wrappers around the existing linear
algebra library Eigen. It provides the actual implementation of any numerical operation
through highly optimized and efficient code [GJ+10].

3.5. A Reconstruction Example

A specific reconstruction example using elsa is given in Code 3.2. First, a 2D Shepp-
Logan phantom is created as a test object, with a resolution of 128 by 128 pixels [SL74].
Then, the geometry of the CT setup is generated, encoding location and properties of
the X-ray source, object and detectors. Having this information available, the projector
corresponding to the discretized linear operator A is defined, using the GPU-accelerated
implementation of Joseph’s method. As a next step, the X-ray scan is simulated, solving
the forward problem through applying the projector to the object. All projections stacked
on top of each other result in the sinogram, which will act as DataContainer y in the
algorithm flowchart shown in Figure 3.1. Finally, the reconstruction problem is created
with the sinogram y and the linear operator A as a weighted least squares problem and
solved using the method of conjugated gradients.

In Figure 3.3, the original test image (a), the intermediate sinogram (b) and the
reconstructed phantom (c) is shown.

filename_in binary filetype=edf

(a) Original phantom

filename_in binary filetype=edf

(b) Simulated sinogram

filename_in binary filetype=edf

(c) Reconstructed phantom

Figure 3.3.: A reconstruction process. The color scale shows the single-valued attenua-
tion coefficient.
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3.5. A Reconstruction Example

Code 3.2: 2D reconstruction example using elsa

1 #include "elsa.h"
2 using namespace elsa;
3

4 int main()
5 {
6 // generate 2D phantom
7 IndexVector_t size(2);
8 size << 128, 128;
9 auto phantom = PhantomGenerator::createModifiedSheppLogan(size);

10

11 // generate full circle trajectory with 128 projections
12 index_t noAngles{128}, arc{360};
13 auto [geometry, sinoDescriptor] =
14 CircleTrajectoryGenerator::createTrajectory(
15 noAngles, phantom.getDataDescriptor(),
16 arc, size(0) * 100, size(0));
17

18 // setup operator for 2d X-ray transform
19 JosephsMethodCUDA projector(phantom.getDataDescriptor(),
20 *sinoDescriptor, geometry);
21

22 // simulate the sinogram
23 auto sinogram = projector.apply(phantom);
24

25 // setup reconstruction problem
26 WLSProblem problem(projector, sinogram);
27

28 // solve the reconstruction problem in 100 interations
29 CG solver(problem);
30 auto reconstruction = solver.solve(100);
31 }

11





4. Compile-Time Programming for elsa

This chapter explores how compile-time programming can be applied to elsa for in-
creased efficiency. First, a short general introduction to templates and compile-time
programming using C++ is given. Second, the specific programming problem of sup-
porting numeric operations on whole array objects is discussed. As expression templates
offer an elegant solution to this problem, their implementation and application to elsa is
described. Benchmarks of the implemented features conclude the chapter.

4.1. Templates in C++

Templates give C++ programmers the ability to write generic code acting on many types
without discarding type safety. They are a core feature and heavily used throughout
the C++ standard library. In recent years, language extensions like compile-time if or
variadic templates have further increased their usefulness [Van17]. Templates offer one
possibility for compile-time programming where computations are done at compile-time
as opposed to at run-time.

4.2. Numeric Operations on Whole Array Objects

The DataContainer class, introduced in Chapter 3, can be seen as an example of a
wrapper class around array-like numerical data. Naturally, one wants to perform
numeric operations with DataContainers such as addition, multiplication, division and
subtraction.

An example of such a numerical expression is

y = a ∗ x + y (4.1)

or in element-wise notation
yi = a ∗ xi + yi (4.2)

where a is a scalar, x, y are DataContainers and i = 1, . . . , n with n being the number of
elements. This specific computation is commonly known as single precision a times x
plus y (saxpy) and specified in the Basic Linear Algebra Subprograms (BLAS) [Bla+02].

There exist two obvious methods for computing saxpy. First, write a special function
as shown in Code 4.1. It uses a single loop over all indices calculating the result. Second,
implement overloaded operators (see Code 4.2 for an example using operator+). Then,
the operators can be chained together to perform the desired calculation.

13



4. Compile-Time Programming for elsa

Code 4.1: Saxpy computation using an explicit function

1 void saxpy(DataContainer const& x, float alpha, DataContainer& y)
2 {
3 for (int i = 0; i < y.getSize(); ++i) {
4 y[i] = alpha * x[i] + y[i];
5 }
6 }
7

8 int main() {
9 ...

10 saxpy(x, 1.2, y);
11 ...
12 }

Code 4.2: Saxpy computation using operator overloading

1 DataContainer operator+(DataContainer left, DataContainer right) {
2 DataContainer result(left);
3 for (int i = 0; i < y.getSize(); ++i) {
4 result[i] += right[i];
5 }
6 return result;
7 }
8 ...
9

10 int main() {
11 ...
12 y = 1.2 * x + y;
13 ...
14 }

At first glance, the overloaded operators seem like the better solution. They allow
writing arbitrary numeric expressions without the need for explicit functions. Plus,
the notation is very intuitive as it resembles the standard mathematical representation
shown in (4.1). However, this solution has a major drawback. Consider the saxpy
function from Code 4.1: It consists of a single loop covering the number of elements
n only once. Using the user-defined operators from 4.2, there will be an intermediate
result from the 1.2 * x computation including traversing n elements. Then this is
added to y, resulting in an additional loop over n elements. The allocation of memory
for the temporary as well as the extra read and write operations increase both run time
and memory requirements. For large n, the extra memory might not even be available.

A third solution is to use in-place operations instead, as demonstrated in Code 4.3.
However, in the saxpy example, this does not improve the performance. The number of

14



4.3. Expression Templates

read and write operations is the same as with operator overloading, as it also requires a
temporary variable for the intermediate result. Furthermore, the notation obfuscates
the intent. ETs can solve this dilemma. They allow for intuitive mathematical notation
while at the same time avoiding the computational overhead.

Code 4.3: Saxpy computation using in-place operations

1 ...
2

3 int main() {
4 ...
5 DataContainer temp(x);
6 temp *= 1.2;
7 y += temp;
8 ...
9 }

4.3. Expression Templates

The technique of ETs was invented independently of each other by Todd Veldhuizen
and David Vandevoorde [Vel95] [Van03]. Since then, ETs have been extensively used for
array-like types and recently also in other domains like the Boost Lambda Library [Van17].

The idea of ETs is to save the computations to be done as a type of a lightweight
Expression object at compile-time. This object can then be evaluated in a single pass
and only when needed. In constrast, the eager evaluation taking place with operator
overloading in Section 4.2 leads to a temporary intermediate result for each operator.
With ETs, the saxpy computation

1.2 * x + y;

results in a type of

Expression<Addition,
Expression<Multiplication,

float,
DataContainer>,

DataContainer>.

The Expression class is declared as

template <typename Callable, typename... Operands>
class Expression;

where Callable represents a generic operation to be performed on the Operands. The
type of the returned Expression contains all information: An addition is to be performed
between a DataContainer and the result of an inner Expression which consists of
multiplying a scalar with a DataContainer.

15



4. Compile-Time Programming for elsa

Using variadic template parameters for the Operands allows the Expression to accom-
modate computations with either one or two Operands. Note that Operand can be either
a scalar, DataContainer or Expression. Consequently, nesting is possible which creates
a recursive tree-like structure of the necessary computations. For saxpy such a tree is
illustrated in Figure 4.1.

+

*

1.2 x

y

Figure 4.1.: Expression tree for saxpy. The blue rectangles represent an Expression
object, the green circle a scalar and the orange diamonds a DataContainer.

The Expression is only evaluated when the results of the computation are needed,
for example when assigning to a DataContainer. In the saxpy example, first the inner

Expression<Multiplication, float, DataContainer>

is computed before using this result in the calculation of the outer

Expression<Addition, Expression<...>, DataContainer>.

4.4. Expression Templates for elsa

As mentioned before, elsa internally uses the linear algebra library Eigen for doing com-
putations based in main memory. The classes DataHandlerCPU and DataHandlerMapCPU
represent wrappers around the Eigen::Matrix type. Eigen itself already implements
the technique of ETs for efficient computations [GJ+]. Consequently, the objective is to
develop a framework which allows utilizing the Eigen provided ETs within elsa.

The approach is to implement ETs for elsa which wrap around the Eigen computations.
Hence, the Expression objects are not doing computations when evaluated but only
allow the construction of Eigen internal ETs which are then immediately evaluated.

The subsequently developed ETs are based on code presented at CppCon 2019 by
Bowie Owens [Owe19]. In contrast to the elsa scenario, his implementation performs
the actual computations. However, the general framework is still applicable.

4.4.1. The Expression Class

The Expression class represents temporary objects which save the computation to be
done in their type information at compile-time as introduced in Section 4.3. Using UML
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notation, the class is summarized in Figure 4.2. The class saves a Callable object as
well as its Operands in member variables. Both are necessary when constructing an
Expression object. Additionally, the eval function triggers the evaluation.

elsa::Expression<Callable, Operands...>

- _callable : const Callable
- _args : std::tuple<ReferenceOrNot<Operands>::type...>

+ Expression(Callable func, Operands const&... args)
+ eval() const : auto

Figure 4.2.: Overview of the Expression class.

Of interest is the helper class ReferenceOrNot<T> which provides a type definition
through its member ReferenceOrNot<T>::type. This type is either a const reference to
T or T itself, allowing the Expression to refer to DataContainers by reference but also
take scalars as well as Expressions by value in its _args member tuple. The reason for
this is that Expression objects might be temporary to a very narrow scope. Referring
to them by value extends their lifetime until needed and consequently prevents having
dangling references.
Expression instances are instantiated in the overloaded operators. Consequently, the

code presented in Code 4.2 changes to Code 4.4. Returning an Expression instead of
the actual result as a DataContainer enables lazy evaluation. As a Callable, a generic
lambda is used, which applies Eigen syntax internally because it will directly operate
on Eigen::Matrix types.

Code 4.4: Overloaded operators returning Expression type

1 auto operator+(DataContainer const& lhs, DataContainer const& rhs)
2 {
3 auto Addition = [](auto const& left, auto const& right) {
4 return (left.array() + right.array()).matrix();
5 };
6 return Expression{addition, lhs, rhs};
7 }

4.4.2. Evaluating an Expression

For evaluating an Expression, the member function eval must be executed. Inter-
nally, this triggers calling the Callable with the Operands as arguments as shown in
Code 4.5. Note that using the generic lambda named callCallable is necessary to use
pack expansion again. The overloaded function evaluateOrReturn plays a key role by
implementing different behavior based on the type of Operand:
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• DataContainer. The function returns the underlying Eigen::Matrix through its
_dataHandler member.

• Expression. The function calls eval of the nested Expression. This descends into
the evaluation tree and triggers the computation from bottom up.

• Scalar. The function returns the scalar by value.

Code 4.6 shows all three functions. The overload resolution is achieved through compile-
time predicates using std::enable_if_t.

Code 4.5: Evaluating an Expression

1 template<typename Callable, typename... Operands>
2 auto Expression<Callable, Operands>::eval() const
3 {
4 auto const callCallable = [this](Operands const&... args) {
5 return _callable(evaluateOrReturn(args)...);
6 };
7 return std::apply(callCallable, _args);
8 }

Code 4.6: Overloaded evaluateOrReturn functions

1 template <class Operand,
2 std::enable_if_t<isExpression<Operand>, int> = 0>
3 constexpr auto evaluateOrReturn(Operand const& operand)
4 {
5 return operand.eval();
6 }
7

8 template <class Operand,
9 std::enable_if_t<isArithmetic<Operand>, int> = 0>

10 constexpr auto evaluateOrReturn(Operand const operand)
11 {
12 return operand;
13 }
14

15 template <class Operand,
16 std::enable_if_t<isDataContainer<Operand>, int> = 0>
17 constexpr auto evaluateOrReturn(Operand const& operand)
18 {
19 return operand._dataHandler->accessData();
20 }

Calling eval on the Expression object returned from the saxpy example
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1.2 * x + y;

triggers the application of evaluateOrReturn to the Operands of the outer

Expression<Addition, Expression<...>, DataContainer>.

As the first operand is the nested inner

Expression<Multiplication, float, DataContainer>,

the eval function is called. This causes evaluateOrReturn to produce the Eigen::Matrix
and the scalar value of 1.2. Those results are used as an input to the generic lambda

auto Multiplication = [](auto const left, auto const& right) {
return (left * right.array()).matrix();

};

with argument left being the scalar and argument right being the Eigen::Matrix.
However, the generic lambda does not perform the computation as Eigen itself imple-
ments ETs. Thus, the operation returns an Eigen specific temporary which is returned to
the outer Expression. After evaluateOrReturn has returned the Eigen::Matrix from
the second operand of the outer Expression, the generic lambda for addition

auto Addition = [](auto const left, auto const& right) {
return (left.array() + right.array()).matrix();

};

once more creates an Eigen temporary. It represents the work to be done for both the
multiplication as well as the addition. The calculation is only performed when the
temporary is assigned to an Eigen::Matrix or used to construct a new Eigen::Matrix.

4.4.3. Extending the DataContainer Class

Instead of manually calling eval, the computation should be triggered automatically
when:

(a) An assignment operation of an Expression to a DataContainer takes place.

(b) A new DataContainer is constructed with an Expression.

Implementing this means extending the DataContainer class through appropriate mem-
ber functions. Code 4.7 shows the assignment operator triggering the evaluation. The
result is written directly into the underlying Eigen::Matrix via the _dataHandler which
in turn causes the evaluation of the Eigen internal ETs. An additional constructor eval-
uates an arbitrary Expression and then passes the result to the existing constructor
taking an Eigen::Matrix as shown in Code 4.8. Both functions are templated to take
arbitrary Expression types.

Code 4.7: Automatic evaluation of Expressions through the assignment operation
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1 template <typename Expression>
2 DataContainer& operator=(Expression const& expression)
3 {
4 _dataHandler->accessData() = expression.eval();
5 return *this;
6 }

Code 4.8: Constructing a new DataContainer using an Expression

1 template <typename Expression>
2 DataContainer(Expression const& expression)
3 : DataContainer(expression.eval())
4 {}

4.5. Benchmarks and Results

For benchmarking, the Catch2 framework is used. It runs code repeatedly and measures
the execution time in each run. In the end, reports are created with the average time as
well as the standard deviation for each benchmarked section. The test environment is
a server with the specifications summarized in Table 4.1. All runs use single precision
floats as the underlying numerical type and are repeated twenty times.

Specification Version / Value

CPU Intel Xeon E5-2687W
GPU Nvidia RTX 2080Ti
Main memory 128 GiB
Linux Kernel 4.15.0-88-generic
Operating System Ubuntu 18.04.4 LTS
Eigen commit 1affbe9. . .
elsa commit before ETs 4497388. . .
elsa commit after ETs b3227b9. . .

Table 4.1.: Server setup for ETs benchmarks.

4.5.1. Expression Benchmarks

The run time of simple numeric expressions like saxpy are measured using the five
example terms:

(a) x = x * y

(b) x = x * y + y
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(c) x = x * y + y / z

(d) x = x * y + y / z + x

(e) x = x * y + y / z + x * z

where x, y and z are array-like containers with the number of elements n varied from
2563 to 20483. For all containers, pseudorandom numbers in the range of 0 to 100 are
used. The expressions are computed in three different scenarios:

1. elsa before the integration of ETs using a DataContainer for x,y,z.

2. elsa after the integration of ETs using a DataContainer for x,y,z.

3. Eigen directly using the Eigen::Matrix type for x,y,z.

The absolute results for expression (a) are reported in Figure 4.3. It is clear that
before ETs are integrated, a large computational overhead exists even for a simple term
whereas with ETs this can be avoided. The relative results using the Eigen scenario as a
baseline in Figure 4.4 confirm the effectiveness for different problem sizes: Before ETs
are introduced, the run times are around 250 % slower. With ETs, they are within 15 %
of the baseline case.
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Figure 4.3.: Absolute mean run times computing x = x * y.

For expression (b), the relative results in Figure 4.5 display a similar picture. As the
expression is more complicated than (a), the run time increases to over 600 % without
ETs. Additionally, for the problem size of 20483, memory errors occur because there is
not enough main memory for the allocation of the intermediate result. Adding the ETs
solves the problem and keeps run times within 10 % of the baseline scenario.

Investigating expressions (c) to (e), confirms the findings: As the expressions get
longer, the overhead without ETs grows whereas with ETs run times stay within 10 % of
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the baseline scenario. This can be seen in Figure 4.6, 4.7 and 4.8. Again, memory errors
occur for the largest problem size of 20483.
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Figure 4.4.: Relative mean run times for computing x = x * y.
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Figure 4.5.: Relative mean run times for calculating x = x * y + y. The * indicates a
missing value due to memory errors.
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Figure 4.6.: Relative mean run times for calculating x = x * y + y / z. The * indicates
a missing value due to memory errors.
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Figure 4.7.: Relative mean run times for calculating x = x * y + y / z + x. The *
indicates a missing value due to memory errors.
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Figure 4.8.: Relative mean run times for calculating x = x * y + y / z + x * z. The *
indicates a missing value due to memory errors.

In Figure 4.9, the connection between expression complexity and run time can be seen
more clearly. The plot shows the relative run times for the single problem size of 10243

across all expressions. The run time grows from 354 % to 1203 % compared to the Eigen
baseline scenario. The absolute mean run times including the standard deviations for all
benchmarks can be found in Table A.2.
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Figure 4.9.: Relative mean run times for different expressions (a) to (e) using a size of
10243.
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4.5.2. Memory Consumption

The memory consumption is tracked using the addition example

x = x + y

where x and y are DataContainers. The heap allocations are measured using the
profiling tool Valgrind. The number of floats in the DataContainers is set to 1283. The
results confirm the expected behavior. Before the expression templates, three large
heap allocations take place, each taking up 8 MiB: Two of them when constructing
the DataContainers, one when the operator + is executed for allocating the temporary
resulting in a total maximum heap usage of 24 MiB.

After the introduction of the ETs, only two large heap allocations occur when the
DataContainers are constructed. The resulting total maximum heap usage is 16 MiB.
That corresponds to a reduction of more than 33 %. For longer expressions, the memory
savings are increasing which directly affect the run time as shown in the previous section
in Figure 4.9.

Before ETs After ETs
0

10

20

24

16

H
ea

p
m

em
or

y
[M

iB
]

Figure 4.10.: Heap memory consumption before and after implementing ETs for calcu-
lating x = x * y.

4.5.3. A Full Reconstruction Task

A reconstruction example like presented in Section 3.5 is benchmarked using a Shepp-
Logan phantom with 2563 to 10243 elements and a matching number of projections
taken in a circular trajectory. As a projector, Joseph’s method is used and as a solver,
the method of conjugated gradients. Averaging twenty iterations, the relative mean run
times are shown in Figure 4.11. There is a speedup ranging from 41 % for the small
problem size to 28 % for the large one.

The decreasing efficiency gains can be attributed to the fact that the fraction of
execution time spend within the apply and applyAdjoint functions of the projector
increases for larger problem sizes. Both functions consist of handwritten GPU code
which does not benefit from the introduced ETs. Run time reductions are only achieved
in the remaining part of the iterative solver loop. This fact is illustrated for size 10243 in
Figure 4.12. All the absolute run times are given in Table A.1.
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Figure 4.11.: Relative mean run times for one solver iteration in a full reconstruction
task. The baseline scenario is elsa before the ETs are added.
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Figure 4.12.: Full reconstruction run times per iteration of the conjugated gradients
solver. The time is split into the two parts: First, the amount spend within
the projectors’ apply and aplyAdjoint functions and second the time in
the remaining solver code.
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This chapter outlines efficiency gains in elsa through leveraging the computing power
of GPUs for basic numeric operations. Specifically, the DataContainer class is extended
through a GPU-based DataHandler. To achieve this, a general GPU library for arbitrary
vector computations called Quickvec is developed, before its integration into elsa is
discussed. Run time benchmarks comparing the CPU versus the GPU DataContainer
conclude the chapter. The source code for Quickvec can be found in a public repository
at https://gitlab.lrz.de/IP/quickvec.

5.1. General-Purpose Computations with GPUs

The original purpose of a GPU is rendering images for displaying graphical output.
As the raw computational power of GPUs started to surpass CPUs at the turn of the
millennia, researchers started to look into the possibility of using those devices for
general computations. In the beginning, this was achieved through existing graphics
Application Programming Interfaces (APIs) like OpenGL or DirectX. However, as this
was cumbersome and error-prone, it did not reach widespread adoption. That changed
with the introduction of an easy to use API tailored for general-purpose computations
called Compute Unified Device Architecture (CUDA) for Nvidia GPUs. Since then,
many computational tasks have benefited from the additional processing power of GPUs,
with one of the most recent ones being the surge in deep learning [Coo12].

A GPU is designed for parallel processing tasks. It can hide memory latencies in
computations. On the other hand, a CPU is mainly tailored for serial code execution
which is mirrored in its hardware. It has multiple caches and branch prediction units. A
problem at hand must have a certain degree of parallelism in order to benefit from using
a GPU. If not, then a CPU might be more efficient for solving it, despite possessing
considerably less processing power [Coo12].

As stated before, CUDA represents one possibility to program a GPU for general-
purpose computations. The only notable alternative is OpenCL, which can work with
both AMD and Nvidia chips. However, CUDA provides better performance in many
cases. As performance is key for CT and the reconstruction servers at the Computational
Imaging and Inverse Problems group run on Nvidia GPUs, the following implementation
details are based on CUDA.

5.1.1. Compute Kernels using CUDA

GPUs using CUDA are programmed through specialized functions called compute kernels
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or simply kernels. They resemble regular functions, except that they are prefixed with a
__global__ or __device__ qualifier and certain keywords like threadIdx have special
meanings. For the saxpy calculation, such a kernel is given in Code 5.1. There is no
need for a loop over all elements of the arrays, as the kernel is automatically executed in
parallel by hundreds of threads. Each thread is identified by its thread and block ID
which together map to a certain element i of the arrays. The calculation is performed
for this element, unless it is out of the array’s range.

A kernel cannot be called like a regular function, but instead it must be launched
using the triple angular bracket syntax as shown in Line 11 of Code 5.1. The arguments
in the angular brackets specify the number of blocks and the number of threads per
block.

Code 5.1: Examplary saxpy kernel

1 __global__
2 void saxpy(int n, float a, float* x, float* y)
3 {
4 int i = blockIdx.x*blockDim.x + threadIdx.x;
5

6 if (i < n)
7 y[i] = a*x[i] + y[i];
8 }
9

10 ...
11 saxpy<<<4096,256>>>(N, 2.0, d_x, d_y); // Perform SAXPY
12 ...

5.2. Efficiency Through a GPU DataContainer

The efficiency of elsa is expected to increase through a GPU DataContainer due to the
following two characteristics:

1. Many computations using the DataContainer are parallel problems, where each
element can be computed independently of each other. Most notably, those are
the operators +, -, * and /, defined between DataContainers and scalars. Those
parallel problems are well suited for GPUs.

2. Derived classes from the LinearOperator base class already provide GPU-based
implementations for computing the forward and backward projection. Hence,
using a CPU DataContainer results in data transfers to and from the GPU memory
in each iteration of a solver. Directly storing the data on the GPU prevents these
data transfers.

In elsa, the DataContainer internally delegates the computations to its correspond-
ing DataHandler. Consequently, the objective is to implement a DataHandlerGPU as a
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counterpart to the existing DataHandlerCPU. The end user should be concerned with the
decision of CPU versus GPU as little as possible, which is achieved through using the
same DataContainer interface.

5.3. Existing Numerical GPU Libraries

The DataHandlerCPU represents a wrapper around the linear algebra library Eigen
which is responsible for the actual computations. However, Eigen does not support GPU
acceleration. Therefore, a different library needs to be used which

• supports element-wise operations between arrays,

• provides reduction operations like different norms,

• supports arbitrary expressions using ETs,

• enables intuitive mathematical notation,

• is widely used and well maintained.

Coming with the CUDA Software Development Kit (SDK) is a library called Thrust
which mimics the behavior of the Standard Template Library (STL) on the GPU [BH12].
Its main drawback is that it does not support efficient arbitrary expressions due to its
lack of ETs.

Using ETs on GPUs was first explored by Wiemann et al. [WWM11]. Their implemen-
tation generates a character string using the compile-time expression which is then at
run-time compiled through the Nvidia Just-In-Time (JIT) compiler into a kernel. Their
approach was further refined, resulting in the development of two notable linear algebra
libraries: VexCL and ViennaCL [Dem+13] [Rup+16]. However, neither of them appears
to be widespread.

Lastly, Wicht et al. created the Expression Templates Library for deep learning applica-
tions [WFH18]. Here, the researchers evaluate subexpression by pre-defined kernels.
The drawback is that this again introduces temporaries. Moreover, the library does not
seem to be widely used.

A lot of the complexity of the libraries mentioned before are caused by the fact that
GPU device code only supported a small subset of C++ template metaprogramming
when they were created. Luckily, that changed in the last years with the latest CUDA
releases. Consequently, directly evaluating expressions in device code became possible,
sidestepping string generated kernels. Breglia et al. explored this possibility through
transferring expressions to the GPU and converting them to a GPU expression [Bre+13].
However, their work did not result in a stand-alone library.

Considering all the limitations of the above mentioned solutions, a custom library
called Quickvec is developed in the next section. It further explores the approach of
evaluating ETs directly on the GPU.
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5.4. The Quickvec Library

In Chapter 4, a concise and elegant ETs implementation using modern C++ was intro-
duced, based on the work of Owens [Owe19]. Its purpose is wrapping around the ETs
provided by Eigen. As ETs are required in Quickvec for efficiency, many of the concepts
developed in Chapter 4 can be adopted. However, the objective is different as the actual
computations have to be performed by Quickvec.

The main idea is to transfer the Expression objects, which save to work to be done,
to the GPU and evaluate them on the device index-wise using the available parallel
processing power. In contrast to the work of Breglia et al., there is no need for conversion
between the Expression on the CPU and the GPU.

The requirements for Quickvec do not include matrix-matrix or vector-matrix opera-
tions but only element-wise vector-vector and vector-scalar computations. That results in
a much simpler treatment of complex expressions compared to a regular linear algebra
library.

5.4.1. Motivation

In Code 5.1, a specific kernel for the saxpy computation is shown. Writing such a kernel
for each individual expression is cumbersome. Therefore, one objective of Quickvec is
to utilize ETs to generate kernels at compile-time. Evaluating an expression should then
be possible through a templated kernel where each thread computes one element as
demonstrated in Line 8 of Code 5.2.

Code 5.2: The kernel for evaluating generic Expressions

1 template <typename Expression>
2 __global__
3 void compute(size_t n, Expression* expression, float* result)
4 {
5 int i = blockIdx.x * blockDim.x + threadIdx.x;
6

7 if (i < n) {
8 result[i] = (*expression)[i];
9 }

10 }

5.4.2. The Vector class

The raw numerical data is stored in an array using the unified memory address space
provided by CUDA. This memory space combines the main and the GPU memory,
allowing the programmer to access device memory in host code. CUDA itself handles
the necessary memory transfers and therefore reduces the complexity considerably.
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To prevent memory errors and provide additional functionality, the raw array is
wrapped into a class called Vector using the Resource Acquisition Is Initialization (RAII)
idiom. Another important aspect is that Vector implements shallow copying because it
enables the subsequently presented Expression class. Consequently, a shared pointer
is needed which acts on the unified memory. As this feature is not available in the
standard library, a custom shared pointer is added. It behaves like a std::shared_ptr
with the only difference that it allocates and frees memory using the CUDA specific
functions for the unified memory.

The class is summarized in Figure 5.1 using UML notation. The eval function
evaluates an Expression into a Vector object. The process is explained in more detail
in Section 5.4.4. The operator[] is implemented for both host and device access. For
intuitive mathematical notation, the binary operators +, -, * and / and unary operators
like log are overloaded with Vector types as their input. Like the overloaded operators
in Chapter 4, they do not return a result but an Expression which stores the work to be
done.

quickvec::Vector

- _data : quickvec::SharedPointer<float>
- _size : size_t

...
+ float& operator[](size_t index)
+ float& __device__ operator[](size_t index)
+ template<class Expression> void eval(Expression expression)

Figure 5.1.: Overview of the Vector class.

5.4.3. The Expression Class

The quickvec::Expression class closely resembles the elsa::Expression class intro-
duced in Section 4.4. Likewise, the Expression saves the work to be done through its
template arguments Callable which is executed upon the Operands. An Operand can be
either a scalar, a Vector or an Expression. However, there are also differences: Instead
of having an eval function, the Quickvec Expression provides element-wise evaluation
using the square brackets operator. Furthermore, all of the Operands are saved by value
in the member tuple _args. In the elsa case, the DataContainer is saved by reference to
prevent copying the data.

The rationale behind this is that the Quickvec Expression has to be copied to the
GPU in order to be evaluated. If Vector is saved by reference, this results in memory
errors when accessing the object in GPU code as it resides in main memory. Note that
this is independent of the fact that the underlying data array is allocated in unified
memory. Consequently, taking Vector by value solves the issue but requires a shallow
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copy constructor to have the copies reference the same data and avoid expensive deep
copy operations. The class structure is shown in UML notation in Figure 5.2.

quickvec::Expression<Callable, Operands...>

- _callable : const Callable
- _args : std::tuple<Operands...>

+ Expression(Callable func, Operands const&... args)
+ __device__ operator[](size_t i) const : auto

Figure 5.2.: Overview of the quickvec::Expression class.

Expression objects are created in the overloaded operators with their Callable ar-
gument being a generic lambda as demonstrated in Code 5.3. The lambda is a device
function which performs the element-wise computation. In the elsa Expression case,
the corresponding lambda only delegates the work to Eigen.

Code 5.3: Overloaded operator + creates an Expression object

1 auto operator+(Vector const& lhs, Vector const& rhs)
2 {
3 auto addition = [] __device__ (float l, float r) { return l + r; };
4 return Expression{addition, lhs, rhs};
5 }

5.4.4. Evaluating an Expression

Before evaluating an Expression, it has to be copied to the GPU. Line 10 in Code 5.4
shows this operation as part of the Vector::eval function which evaluates an Expression
into the Vector. Copying the Expression is cheap as it only contains pointers to the
actual data or primitive types for the scalars. Then, the compute kernel introduced in
Code 5.2 is launched in Line 13 of Code 5.4 with a fixed number of threads per block
and the number of blocks matching the problem size.

Code 5.4: Evaluating an Expression into a Vector

1 template <typename Expression>
2 void Vector::eval(Expresson expression)
3 {
4 unsigned int blockSize = 256;
5 auto numBlocks = static_cast<unsigned int>((_size + blockSize - 1)
6 / blockSize);
7

8 Expression* devExpression;
9 cudaMalloc(&devExpression, sizeof(Expression));
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10 cudaMemcpy(devExpression, &expression,
11 sizeof(Expression), cudaMemcpyHostToDevice);
12

13 compute<<<numBlocks, blockSize>>>(_size, devExpression, _data.get());
14

15 cudaDeviceSynchronize();
16 cudaFree(devExpression);
17 }

As a next step, the parallel processing starts with hundreds of threads running on
the GPU. Each thread evaluates the Expression at a specific index through its square
brackets operator shown in Code 5.5. Here, separate cases for unary and binary operators
are created using constexpr if.

Code 5.5: Evaluating an Expression index-wise

1 __device__ float quickvec::Expression::operator[](size_t i) const
2 {
3 if constexpr (std::tuple_size_v<decltype(_args)> == 1) {
4 return _callable(evaluateOrReturn(std::get<0>(_args), i));
5 } else {
6 return _callable(evaluateOrReturn(std::get<0>(_args), i),
7 evaluateOrReturn(std::get<1>(_args), i));
8 }
9 }

Calling evaluateOrReturn shown in Code 5.6 on each Operand at the specified index
either returns the value in the case of scalars and Vectors or further descends into the
expression tree through executing the square bracket operator of the nested Expression
object.

Code 5.6: The evaluateOrReturn function

1 template <class Operand>
2 __device__
3 constexpr float evaluateOrReturn(Operand const& operand, size_t const i)
4 {
5 if constexpr (isVectorOrExpression<Operand>) {
6 return operand[i];
7 } else {
8 return operand;
9 }

10 }

If the Operands have returned their values, the generic lambda stored in the _callable
member is executed with the results from evaluateOrReturn as arguments. Finally, the
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lambda performs the computation for the two elements.
As each index-wise computation is independent of each other, the problem can

fully utilize the parallel processing power of the GPU without considering any inter-
thread or inter-block synchronization. This kind of computation is categorized as an
"embarrassingly" parallel problem [HS11].

5.4.5. Compiling Quickvec

Compiling Quickvec using the regular toolchain with the CUDA compiler driver nvcc
is not possible, because nvcc only supports code up to C++14, but Quickvec ETs rely
heavily on C++17. Instead, the compiler Clang is used to directly compile CUDA code.
This feature is still considered experimental and therefore requires a close match between
the Clang and the CUDA version [Wu+16]. Tested configurations include

• CUDA 9.2 with Clang 8 or

• CUDA 10.0 with Clang 8.

As the ETs generate custom kernels at compile-time, it is not possible to compile
Quickvec once and then use it throughout the project. Instead, every target which
utilizes Quickvec computations has to be compiled with the setup mentioned before.

5.5. Integrating Quickvec into elsa

The framework developed in Chapter 4 for utilizing the Eigen internal ETs within elsa
can also be used for the Quickvec integration.

A new DataHandlerGPU is added which is used as the default handler type if the
compile-time switch for Quickvec support is activated. This handler wraps around the
quickvec::Vector class. Additionally, when constructing a DataContainer, the handler
type can be specified using an enum as an additional argument.

To accommodate both Eigen and Quickvec side-by-side, the evaluation of elsa
Expressions has to provide two different paths because the return type of all in-
volved functions differ depending on the underlying library. Evaluating an Expression
containing CPU DataContainers returns Eigen Expression objects. On the other
hand, Quickvec Expression objects are returned with GPU DataContainers. The two
paths are created at compile-time through templating all involved functions, namely
elsa::Expression::eval and the three overloaded elsa::evaluateOrReturn, with a
boolean GPU flag. Consequently, their definitions become

template <typename Operand, bool GPU>
elsa::evaluateOrReturn(Operand operand)

and

template <bool GPU>
elsa::Expression::eval();.
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The differentiation between CPU and GPU is achieved at run-time through dynamic
casts of the base class pointer _dataHandler. Line 6 in Code 5.7 executes the CPU path
whereas Line 9 in Code 5.7 completes the GPU path when assigning an Expression to a
DataContainer.

Code 5.7: Evaluating both Quickvec and Eigen depending on the handler type

1 template <typename Expression>
2 DataContainer<data_t>& operator=(Expression const& expression)
3 {
4 if (auto handler =
5 dynamic_cast<DataHandlerCPU<data_t>*>(_dataHandler.get())) {
6 handler->accessData() = expression.template eval<false>();
7 } else if (auto handler =
8 dynamic_cast<DataHandlerGPU<data_t>*>(_dataHandler.get())) {
9 handler->accessData().eval(expression.template eval<true>());

10 }
11 return *this;
12 }

In addition to using the computational power of Quickvec, the GPU projectors in elsa
can be adapted to the fact that the data already resides in GPU memory with Quickvec.
Expensive main to device memory transfers are avoided and replaced by GPU internal
copy operations. For Joseph’s method, a copy is still necessary as it uses specialized
textured memory in the kernel. Using in-place manipulation with Siddon’s method is
possible but not explored as part of the thesis. At run-time, the apply and applyAdjoint
functions of the projectors can derive the type of memory transfer from the input they
receive.

5.6. Benchmarks and Results

For benchmarking, the same setup as in Section 4.5 using Catch2 with the server
specified in Table 5.1 is used. Problem sizes are varied in the range of 2563 to 10243

individual elements, with the upper bound set by memory limitations of available GPUs.
A reconstruction volume with 10243 elements requires 4 GiB of memory, assuming floats
with four bytes each. The corresponding full reconstruction task needs around five times
as much memory due to intermediate results in the solver and projector. However, most
commercially available GPUs currently provide around 10 GiB of memory which is not
sufficient for tasks larger than 10243 elements. Each benchmark is run twenty times
before computing the mean result and standard deviation.

5.6.1. Numeric Computations

The first benchmark is the saxpy computation
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Specification Version / Value

CPU Intel Xeon E5-2687W
GPU Nvidia RTX 2080Ti
Main memory 64 GiB
Linux Kernel 4.15.0-88-generic
Operating System Ubuntu 18.04.4 LTS
Eigen commit 1affbe9. . .
Quickvec commit a5bf6e06. . .
elsa commit before ETs 4497388. . .
elsa commit with Quickvec 2eef2f45. . .

Table 5.1.: Server setup for Quickvec benchmarks.

y = a x + y,

where x and y are array-like containers and a a floating pointer number. As a reference
implementation, the Nvidia proprietary cuBLAS library is used which provides GPU
versions of the algorithms in the BLAS library. The other scenarios are using Quickvec
directly, Quickvec wrapped in elsa and Eigen directly. Figure 5.3 shows the absolute
run times in comparison. The GPU-based algorithms outperform the CPU-based Eigen
implementation by more than one order of magnitude.
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Figure 5.3.: Mean run times computing saxpy.

Relative results with cuBLAS being the baseline are presented in Figure 5.4. The plot
shows that Quickvec has very minor performance deficits compared to the cuBLAS
saxpy kernel for larger problem sizes. For 2563 elements, the overhead is much bigger at
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around 45 % because the necessary transfer of the Expression object is more relevant
for the run time compared to the computation itself.

Furthermore, wrapping Quickvec into elsa adds a marginal overhead of maximum
five percent. That confirms the results from Chapter 4: The elsa ETs are able to leverage
internal ET implementations from both Eigen and Quickvec. All mean run times as well
as their standard deviations can be found in Table B.1.
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Figure 5.4.: Mean relative run times computing saxpy.

5.6.2. GPU Projectors

The second efficiency improvements through using Quickvec are reduced main memory
to GPU memory transfers when using GPU projectors to compute the forward or
backward projection. As previously mentioned, two implementations are available in
elsa: SiddonsMethodCUDA and JosephsMethodCUDA. To measure the effect, both projectors
are run using a GPU or a CPU DataContainer as an input. Based on the input, the
algorithm creates either an internal or external copy. Figure 5.5 displays relative results
with the main memory DataContainer as the baseline.

For smaller reconstruction volumes, there are noteworthy run time reductions in
the region of 10 % to 40 %. However, for size 10243, those relative speed gains are
diminished to under 3 %. This can be explained by the fact that the run time of the
projection algorithm itself grows faster than the linearly increasing time demand for
memory transfers.

As Joseph’s method has shorter absolute run times than Siddon’s method, the fraction
of time spent with memory transfers is larger. Hence, the efficiency gains are also bigger.
All the absolute measurements can be found in Appendix B in Table B.2.
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Figure 5.5.: Relative run time of projectors using a GPU DataContainer as input. The
baseline scenario consists of a CPU Datacontainer as input. Fwd. abbrevi-
ates the forward projection, bwd. the backward projection.

5.6.3. Full Reconstruction

In a full reconstruction task, both the reduced memory transfers and the faster GPU
computations lead to efficiency improvements. As in the results of Chapter 4, the
full reconstruction task consists of a 3D Shepp-Logan phantom as a test volume, the
projector JosephsMethodCUDA and the method of conjugated gradients as a solver. Again,
different sizes from 2563 to 7683 elements are tested with the upper limit determined by
the memory limitations of the available GPU. The number of projections matches the
dimension of the volume. Two scenarios are benchmarked:

(a) elsa with a CPU DataContainer using Eigen. This corresponds to the state of elsa
before the changes discussed in Chapter 5 are introduced. In legend entries, the
scenario is abbreviated to CPU Eigen.

(b) elsa with a GPU DataContainer using Quickvec. This is the final state of elsa
considered in this thesis. It is referred to as GPU Quickvec in legend entries.

The absolute mean run times for one solver iteration are presented in Figure 5.6. It
shows that there is a considerable speedup from using Quickvec which tends to get
smaller for larger problem sizes. That is again caused by the fact that the time spent
within the projector’s apply and applyAdjoint functions grows larger compared to the
time in the remaining solver loop.

Nevertheless, for the size of 7683 voxels, the run time is reduced by around 20 %,
compared to 38 % and 51 % for sizes of 5123 and 2563 respectively. The relative results for
all sizes are shown in Figure 5.7 and the detailed measurements are added in Table B.3.

Additionally, the full reconstruction task is run using elsa in a state before the
introduction of the ETs added in Chapter 4. Using this scenario as a baseline, the relative
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Figure 5.6.: Mean run times for one solver iteration in a full reconstruction task.
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Figure 5.7.: Relative mean run times for one solver iteration in a full reconstruction task.
The baseline scenario is running the example with a CPU DataContainer.

results are presented in Figure 5.8. The combined total run time reductions range from
66 % for size 2563, to 54 % for size 5123 and 42 % for the largest problem size of 7683.
Other commits that have been added to elsa between the introduction of the ETs and the
GPU-based DataContainer also affect the measurements as indicated by the difference
between the state after ETs have been added and the CPU Eigen scenario.
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The baseline scenario is elsa before the ETs are added.
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6. Discussion

6.1. Summary

In the present thesis, efficiency improvements for the tomographic reconstruction frame-
work elsa are presented. Those improvements are grounded in optimizing basic numeric
operations while still maintaining an intuitive math-like syntax within elsa. First, the
technique of ETs is integrated which allows leveraging the existing highly optimized
Eigen implementations. Then, a GPU-based vector arithmetic library called Quickvec is
created, harnessing the parallel processing power of GPUs. It is integrated in the same
way as Eigen, therefore leveraging the internal ETs.

The results are a reduction in total reconstruction time of up to 66 % for real sized
problems in CT. Additionally, larger reconstruction sizes become feasible because the
peak memory consumption is reduced.

The main contribution of the thesis is the development and integration of the Quickvec
library which provides general element-wise vector arithmetic using the GPU. This
functionality is not limited to the scope of CT or elsa but can be used in other contexts
such as tabular data processing. Consequently, Quickvec has been implemented and
open-sourced in a separate repository.

6.2. Limitations and Future Directions

One limitation of the Quickvec library is that it does not support reduction operations
on quickvec::Expression types. If such an operation is necessary, an intermediate
quickvec::Vector which evaluates the expression has to be constructed first. Then, the
reduction operation can be applied to the temporary. That requires the syntax

Vector temporary = 1.2 * x + y;
float result = temporary.l2norm();.

The consequence is a double traversal of all elements as well as a temporary allocation
which both negatively affect the performance. It can be avoided through combining
expression evaluation and reduction into a single kernel. Specifically that means adding
a reduction step after the evaluation to the kernel given in Code 5.2, enabling concise
syntax as

float result = (1.2 * x + y).l2norm();

and additionally improving efficiency.
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6. Discussion

Another limitation is that the current codebase of elsa is not fully optimized yet for
the newly available ETs presented in this thesis. Many DataContainer operations were
written without the assumption of lazy evaluation. That leads to more verbose and less
intuitive code. Consequently, further work is necessary to leverage the power of lazy
evaluation with the new Quickvec as well as the existing Eigen library. Furthermore,
doing in-place manipulation instead of using an internal copy of the data in the GPU
projectors can be explored.

Lastly, due to size limitations of GPU memory, running full reconstruction examples
with volumes larger than 10243 voxels is currently not possible. This size already
requires memory of roughly 30 GiB which is close to the maximum available memory in
commercial graphics cards. Running larger tasks, for example with 20483 elements, is
and will be above the limits of GPU memory in the foreseeable future – even until the
end of the decade. The solution to this problem is splitting up the reconstruction volume
into subvolumes and running reconstruction tasks either sequentially on a single GPU
or in parallel on multiple GPUs. However, this requires intelligent splitting algorithms
as well as extensive rework of elsa. Adding this feature can be a topic for future work.
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A. Detailed Benchmarking Results for
Expression Templates

Scenario
Size

2563 5123 10243

Mean σ Mean σ Mean σ

[s] [s] [s] [s] [s] [s]

Before ETs solver 0.303 0.009 2.306 0.007 32.963 0.454
Before ETs projector 0.263 0.004 3.313 0.018 52.354 0.370

After ETs solver 0.062 0.007 0.436 0.012 6.951 0.120
After ETs projector 0.261 0.003 3.329 0.27 54.115 1.154

Table A.1.: Run times for one solver iteration in a full reconstruction task. Joseph’s
method is used as a projector and the method of conjugated gradients as
a solver. The number of projections matches the size of the reconstruction
volume. σ indicates the standard deviation of twenty samples.
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B. Detailed Benchmarking Results for
Quickvec

Scenario
Size

2563 5123 10243

Mean σ Mean σ Mean σ

[ms] [ms] [ms] [ms] [ms] [ms]

Eigen 9.93 0.03 77.98 0.08 627.64 5.49
cuBLAS 0.38 0.01 2.95 0.01 23.52 0.02
Quickvec 0.55 0.01 3.15 0.02 23.89 0.37
elsa using Quickvec 0.57 0.02 3.14 0.03 23.80 0.07

Table B.1.: Run times for saxpy y = ax + y computation where x and y are vectors and
a is a scalar. Size refers to the number of elements in the vectors x and y. σ

denotes the standard deviation of twenty sample runs.

Scenario
Size

2563 5123 10243

Mean σ Mean σ Mean σ

[s] [s] [s] [s] [s] [s]

Siddon’s Forward CPU 0.122 0.002 2.708 0.091 48.673 0.273
Siddon’s Forward GPU 0.084 0.001 2.428 0.122 48.548 0.192
Siddon’s Backward CPU 0.149 0.003 3.758 0.032 66.178 0.389
Siddon’s Backward GPU 0.104 0.002 3.442 0.267 65.371 0.580

Joseph’s Forward CPU 0.097 0.002 1.066 0.024 14.925 0.157
Joseph’s Forward GPU 0.062 0.001 0.784 0.011 14.630 0.098
Joseph’s Backward CPU 0.094 0.003 1.132 0.24 17.867 0.261
Joseph’s Backward GPU 0.052 0.001 0.837 0.032 17.545 0.138

Table B.2.: Run times for projectors using a CPU or a GPU DataContainer as an input.
σ denotes the standard deviation for twenty sample runs.
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Scenario
Size

2563 5123 7683

Mean σ Mean σ Mean σ

[s] [s] [s] [s] [s] [s]

DataContainer GPU 0.132 0.002 1.803 0.017 10.892 0.083
DataContainer CPU 0.270 0.012 2.930 0.025 13.632 0.220
Before ETs 0.552 0.016 5.649 0.025 27.168 1.580

Table B.3.: Run times for a full reconstruction task. Joseph’s method is used as a projector
and the method of conjugated gradients as a solver. Twenty iterations per
scenario are run. σ denotes the standard deviation of the samples.
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